Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomed Pharmacother ; 172: 116254, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38340398

RESUMO

Leishmaniases, a group of diseases caused by the species of the protozoan parasite Leishmania, remains a significant public health concern worldwide. Host immune responses play a crucial role in the outcome of Leishmania infections, and several mediators that regulate inflammatory responses are potential targets for therapeutic approaches. Annexin A1 (AnxA1), an endogenous protein endowed with anti-inflammatory and pro-resolving properties, has emerged as a potential player. We have shown that during L. braziliensis infection, deficiency of AnxA1 exacerbates inflammatory responses but does not affect parasite burden. Here, we have investigated the role of AnxA1 in L. amazonensis infection, given the non-healing and progressive lesions characteristic of this infectious model. Infection of AnxA1 KO BALB/c mice resulted in increased lesion size and tissue damage associated with higher parasite burdens and enhanced inflammatory response. Notably, therapeutic application of the AnxA1 peptidomimetic Ac2-26 improves control of parasite replication and increases IL-10 production in vivo and in vitro, in both WT and AnxA1 KO mice. Conversely, administration of WRW4, an inhibitor of FPR2/3, resulted in larger lesions and decreased production of IL-10, suggesting that the effects of AnxA1 during L. amazonensis infection are associated with the engagement of these receptors. Our study illuminates the role of AnxA1 in L. amazonensis infection, demonstrating its impact on the susceptibility phenotype of BALB/c mice. Furthermore, our results indicate that targeting the AnxA1 pathway by using the Ac2-26 peptide could represent a promising alternative for new treatments for leishmaniasis.


Assuntos
Anexina A1 , Leishmania , Leishmaniose , Peptídeos , Animais , Camundongos , Anexina A1/administração & dosagem , Anexina A1/metabolismo , Imunidade , Interleucina-10/metabolismo , Leishmaniose/tratamento farmacológico , Camundongos Endogâmicos BALB C , Peptídeos/administração & dosagem
2.
J Thromb Haemost ; 21(10): 2666-2678, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37495082

RESUMO

The plasminogen/plasmin (Plg/Pla) system, best known for its classical role in thrombolysis, has been recently highlighted as a regulator of other biological processes in mammals, including key steps involved in the resolution of inflammation. Inflammation resolution is a complex process coordinated by different cellular effectors, notably leukocytes, and active mediators, and is initiated shortly after the inflammatory response begins. Once the inflammatory insult is eliminated, an effective and timely engagement of proresolution programs prevents persistent inflammation, thereby avoiding excessive tissue damage, fibrosis, and the development of autoimmunity. Interestingly, recent studies demonstrate that Plg/Pla and their receptor, plasminogen receptor KT (Plg-RKT), regulate key steps in inflammation resolution. The number of studies investigating the involvement of the Plg/Pla system in these and other aspects of inflammation, including degradation of extracellular matrices, immune cell migration, wound healing, and skeletal growth and maintenance, highlights key roles of the Plg/Pla system during physiological and pathologic conditions. Here, we discuss robust evidence in the literature for the emerging roles of the Plg/Pla system in key steps of inflammation resolution. These findings suggest that dysregulation in Plg production and its activation plays a role in the pathogenesis of inflammatory diseases. Elucidating central mechanisms underlying the role of Plg/Pla in key steps of inflammation resolution either in preclinical models of inflammation or in human inflammatory conditions, can provide a rationale for the development of new pharmacologic interventions to promote resolution of inflammation, and open new pathways for the treatment of thromboinflammatory conditions.


Assuntos
Fibrinolisina , Plasminogênio , Animais , Humanos , Plasminogênio/metabolismo , Fibrinolisina/metabolismo , Macrófagos/metabolismo , Inflamação/metabolismo , Fibrinólise , Mamíferos/metabolismo
3.
Cells ; 12(10)2023 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-37408237

RESUMO

Macrophages are important effectors of inflammation resolution that contribute to the elimination of pathogens and apoptotic cells and restoration of homeostasis. Pre-clinical studies have evidenced the anti-inflammatory and pro-resolving actions of GILZ (glucocorticoid-induced leucine zipper). Here, we evaluated the role of GILZ on the migration of mononuclear cells under nonphlogistic conditions and Escherichia coli-evoked peritonitis. TAT-GILZ (a cell-permeable GILZ-fusion protein) injection into the pleural cavity of mice induced monocyte/macrophage influx alongside increased CCL2, IL-10 and TGF-ß levels. TAT-GILZ-recruited macrophages showed a regulatory phenotype, exhibiting increased expression of CD206 and YM1. During the resolving phase of E. coli-induced peritonitis, marked by an increased recruitment of mononuclear cells, lower numbers of these cells and CCL2 levels were found in the peritoneal cavity of GILZ-deficient mice (GILZ-/-) when compared to WT. In addition, GILZ-/- showed higher bacterial loads, lower apoptosis/efferocytosis counts and a lower number of macrophages with pro-resolving phenotypes. TAT-GILZ accelerated resolution of E. coli-evoked neutrophilic inflammation, which was associated with increased peritoneal numbers of monocytes/macrophages, enhanced apoptosis/efferocytosis counts and bacterial clearance through phagocytosis. Taken together, we provided evidence that GILZ modulates macrophage migration with a regulatory phenotype, inducing bacterial clearance and accelerating the resolution of peritonitis induced by E. coli.


Assuntos
Infecções por Escherichia coli , Peritonite , Fatores de Transcrição , Animais , Camundongos , Escherichia coli/metabolismo , Infecções por Escherichia coli/metabolismo , Inflamação/metabolismo , Macrófagos/metabolismo , Monócitos/metabolismo , Peritonite/metabolismo , Fatores de Transcrição/metabolismo
4.
Int Immunopharmacol ; 122: 110609, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37429145

RESUMO

We recently demonstrated that clindamycin exhibits activities in acute and chronic models of pain and inflammation. In the present study, we investigated the effects of clindamycin and a clindamycin acetylated derivative (CAD) in models of acute joint inflammation and in a microbiological assay. Joint inflammation was induced in mice by intraarticular (i.a.) injection of zymosan or lipopolysaccharide (LPS). Clindamycin or CAD were administered via the intraperitoneal route 1 h before zymosan or LPS. Paw withdrawal threshold, joint diameter, histological changes, neutrophil recruitment, tumor necrosis factor-α (TNF-α) production and phosphorylation of the IκBα and NF-κB/p65 were evaluated. In vitro assays were used to measure the antibacterial activity of clindamycin and CAD and also their effects on zymosan-induced TNF-α production by RAW264.7 macrophages. Clindamycin exhibited activity against Staphylococcus aureus and Salmonella Typhimurium ATCC® strains at much lower concentrations than CAD. Intraarticular injection of zymosan or LPS induced articular hyperalgesia, edema and neutrophil infiltration in the joints. Zymosan also induced histological changes, NF-κB activation and TNF-α production. Responses induced by zymosan and LPS were inhibited by clindamycin (200 and 400 mg/kg) or CAD (436 mg/kg). Both clindamycin and CAD inhibited in vitro TNF-α production by macrophages. In summary, we provided additional insights of the clindamycin immunomodulatory effects, whose mechanism was associated with NF-κB inhibition and reduced TNF-α production. Such effects were extended to a clindamycin derivative with reduced antibacterial activity, indicating that clindamycin derivatives should be investigated as candidates to drugs that could be useful in the management of inflammatory and painful conditions.


Assuntos
Artrite , NF-kappa B , Camundongos , Animais , Fator de Necrose Tumoral alfa/farmacologia , Hiperalgesia/induzido quimicamente , Hiperalgesia/tratamento farmacológico , Clindamicina/uso terapêutico , Clindamicina/farmacologia , Infiltração de Neutrófilos , Zimosan , Lipopolissacarídeos/farmacologia , Inflamação/induzido quimicamente , Antibacterianos/farmacologia , Edema/induzido quimicamente , Edema/tratamento farmacológico
5.
JCI Insight ; 8(8)2023 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-36917195

RESUMO

Sepsis is a lethal syndrome characterized by systemic inflammation and abnormal coagulation. Despite therapeutic advances, sepsis mortality remains substantially high. Herein, we investigated the role of the plasminogen/plasmin (Plg/Pla) system during sepsis. Plasma levels of Plg were significantly lower in mice subjected to severe compared with nonsevere sepsis, whereas systemic levels of IL-6, a marker of sepsis severity, were higher in severe sepsis. Plg levels correlated negatively with IL-6 in both septic mice and patients, whereas plasminogen activator inhibitor-1 levels correlated positively with IL-6. Plg deficiency render mice susceptible to nonsevere sepsis induced by cecal ligation and puncture (CLP), resulting in greater numbers of neutrophils and M1 macrophages, liver fibrin(ogen) deposition, lower efferocytosis, and increased IL-6 and neutrophil extracellular trap (NET) release associated with organ damage. Conversely, inflammatory features, fibrin(ogen), and organ damage were substantially reduced, and efferocytosis was increased by exogenous Pla given during CLP- and LPS-induced endotoxemia. Plg or Pla protected mice from sepsis-induced lethality and enhanced the protective effect of antibiotics. Mechanistically, Plg/Pla-afforded protection was associated with regulation of NET release, requiring Pla-protease activity and lysine binding sites. Plg/Pla are important host-protective players during sepsis, controlling local and systemic inflammation and collateral organ damage.


Assuntos
Armadilhas Extracelulares , Sepse , Camundongos , Animais , Fibrinolisina , Plasminogênio , Armadilhas Extracelulares/metabolismo , Interleucina-6/metabolismo , Inflamação/metabolismo , Sepse/metabolismo , Fibrina/metabolismo
6.
Planta Med ; 89(7): 718-728, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36626932

RESUMO

Gouty arthritis (GA) is an inflammatory arthritis triggered by the deposition of monosodium urate monohydrate (MSU) crystals, causing pain, inflammation, and joint damage. Several drugs are currently employed to manage acute flares of GA, but they either have limited effectiveness or induce severe adverse reactions. Ouratea spectabilis is traditionally used in Brazil to treat gastric ulcers and rheumatism. The ethanolic extract of O. spectabilis stems (OSpC) and four biflavanones (ouratein A - D) isolated thereof were evaluated in a murine model of GA induced by the injection of MSU crystals. The underlying mechanism of action of ouratein D was investigated in vitro in cell cultures by measurement of IL-1ß levels by ELISA and Western blot analysis. The administration of OSpC (10, 30 or 100 mg/Kg, p. o.) reduced the migration of total inflammatory cells, monocytes, and neutrophils and diminished the levels of IL-1ß and CXCL1 in the synovial tissue. Among the tested compounds, only ouratein D (1 mg/Kg) reduced the migration of the inflammatory cells and it was shown to be active up to 0.01 mg/Kg (equivalent to 0.34 nM/Kg, p. o.). Treatment of pre-stimulated THP-1 cells (differentiated into macrophages) or BMDMs with ouratein D reduced the release of IL-1ß in both macrophage lines. This biflavanone reduced the activation of caspase-1 (showed by the increase in the cleaved form) in supernatants of cultured BMDMs, evidencing its action in modulating the inflammasome pathway. The obtained results demonstrate the anti-gout properties of O. spectabilis and point out ouratein D as the bioactive component of the assayed extract.


Assuntos
Artrite Gotosa , Gota , Ochnaceae , Camundongos , Animais , Ochnaceae/metabolismo , Gota/induzido quimicamente , Gota/metabolismo , Ácido Úrico , Macrófagos/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Artrite Gotosa/induzido quimicamente , Artrite Gotosa/tratamento farmacológico , Artrite Gotosa/metabolismo , Interleucina-1beta/metabolismo
7.
Curr Drug Targets ; 23(17): 1578-1592, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36221881

RESUMO

COVID-19 is a multisystem disease caused by SARS-CoV-2 and is associated with an imbalance between the coagulation and fibrinolytic systems. Overall, hypercoagulation, hypofibrinolysis and fibrin-clot resistance to fibrinolysis predispose patients to thrombotic and thromboembolic events. In the lungs, the virus triggers alveolar and interstitial fibrin deposition, endothelial dysfunction, and pulmonary intravascular coagulation, all events intrinsically associated with the activation of inflammation and organ injury. Adding to the pathogenesis of COVID-19, there is a positive feedback loop by which local fibrin deposition in the lungs can fuel inflammation and consequently dysregulates coagulation, a process known as immunothrombosis. Therefore, fibrinolysis plays a central role in maintaining hemostasis and tissue homeostasis during COVID-19 by cleaning fibrin clots and controlling feed-forward products of coagulation. In addition, components of the fibrinolytic system have important immunomodulatory roles, as evidenced by studies showing the contribution of Plasminogen/Plasmin (Plg/Pla) to the resolution of inflammation. Herein, we review clinical evidence for the dysregulation of the fibrinolytic system and discuss its contribution to thrombosis risk and exacerbated inflammation in severe COVID-19. We also discuss the current concept of an interplay between fibrinolysis and inflammation resolution, mirroring the well-known crosstalk between inflammation and coagulation. Finally, we consider the central role of the Plg/Pla system in resolving thromboinflammation, drawing attention to the overlooked consequences of COVID-19-associated fibrinolytic abnormalities to local and systemic inflammation.


Assuntos
COVID-19 , Trombose , Humanos , Inflamação/tratamento farmacológico , COVID-19/complicações , SARS-CoV-2 , Trombose/etiologia
8.
Curr Top Microbiol Immunol ; 436: 147-164, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36243843

RESUMO

Phosphoinositide-3-kinases (PI3Ks) are enzymes involved in signalling and modification of the function of all mammalian cells. These enzymes phosphorylate the 3-hydroxyl group of the inositol ring of phosphatidylinositol, resulting in lipid products that act as second messengers responsible for coordinating many cellular functions, including activation, chemotaxis, proliferation and survival. The identification of the functions that are mediated by a specific PI3K isoform is complex and depends on the specific cell type and inflammatory context. In this chapter we will focus on the role of PI3K isoforms in the context of innate immunity, focusing on the mechanisms by which PI3K signalling regulates phagocytosis, the activation of immunoglobulin, chemokine and cytokines receptors, production of ROS and cell migration, and how PI3K signalling plays a central role in host defence against infections and tissue injury.


Assuntos
Imunidade Inata , Fosfatidilinositol 3-Quinases , Animais , Quimiocinas , Inositol , Mamíferos/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositóis/metabolismo , Isoformas de Proteínas/metabolismo , Espécies Reativas de Oxigênio , Receptores de Citocinas
9.
Res Pract Thromb Haemost ; 6(5): e12747, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35814801

RESUMO

The ISTH London 2022 Congress is the first held (mostly) face-to-face again since the COVID-19 pandemic took the world by surprise in 2020. For 2 years we met virtually, but this year's in-person format will allow the ever-so-important and quintessential creativity and networking to flow again. What a pleasure and joy to be able to see everyone! Importantly, all conference proceedings are also streamed (and available recorded) online for those unable to travel on this occasion. This ensures no one misses out. The 2022 scientific program highlights new developments in hemophilia and its treatment, acquired and other inherited bleeding disorders, thromboinflammation, platelets and coagulation, clot structure and composition, fibrinolysis, vascular biology, venous thromboembolism, women's health, arterial thrombosis, pediatrics, COVID-related thrombosis, vaccine-induced thrombocytopenia with thrombosis, and omics and diagnostics. These areas are elegantly reviewed in this Illustrated Review article. The Illustrated Review is a highlight of the ISTH Congress. The format lends itself very well to explaining the science, and the collection of beautiful graphical summaries of recent developments in the field are stunning and self-explanatory. This clever and effective way to communicate research is revolutionary and different from traditional formats. We hope you enjoy this article and will be inspired by its content to generate new research ideas.

10.
Front Immunol ; 13: 762080, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35145518

RESUMO

Leishmania spp. infection outcomes are dependent on both host and parasite factors. Manipulation of host signaling pathways involved in the generation of immune responses is thought to be one of the most common mechanisms used by parasites for persistence within the host. Considering the diversity of pathologies caused by different Leishmania spp., it is plausible that significant differences may exist in the mechanisms of host cell manipulation by each parasite species, which may have implications when developing new vaccine or treatment strategies. Here we show that in L. braziliensis-infection in BALB/c mice, a model of resistance, activation of ERK1/2 coincides with the peak of inflammatory responses and resolution of tissue parasitism. In contrast, in the susceptibility model of L. amazonensis-infection, an early silent phase of infection is observed, detected solely by quantification of parasite loads. At this early stage, only basal levels of P-ERK1/2 are observed. Later, after a brief shutdown of ERK1/2 phosphorylation, disease progression is observed and is associated with increased inflammation, lesion size and tissue parasitism. Moreover, the short-term down-regulation of ERK1/2 activation affected significantly downstream inflammatory pathways and adaptive T cell responses. Administration of U0126, a MEK/ERK inhibitor, confirmed this phenomenon, since bigger lesions and higher parasite loads were seen in infected mice that received U0126. To investigate how kinetics of ERK1/2 activation could affect the disease progression, U0126 was administered to L. amazonensis-infected animals earlier than the P-ERK1/2 switch off time-point. This intervention resulted in anticipation of the same effects on inflammatory responses and susceptibility phenotype seen in the natural course of infection. Additionally, in vitro inhibition of ERK1/2 affected the phagocytosis of L. amazonensis by BMDMs. Collectively, our findings reveal distinct temporal patterns of activation of inflammatory responses in L. braziliensis and L. amazonensis in the same animal background and a pivotal role for a brief and specific shutdown of ERK1/2 activation at late stages of L. amazonensis infection. Since activation of inflammatory responses is a crucial aspect for the control of infectious processes, these findings may be important for the search of new and specific strategies of vaccines and treatment for tegumentary leishmaniasis.


Assuntos
Imunidade Celular , Leishmania mexicana/imunologia , Leishmaniose/imunologia , Leishmaniose/metabolismo , Leishmaniose/parasitologia , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Animais , Biomarcadores , Citocinas/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Feminino , Interações Hospedeiro-Patógeno/imunologia , Mediadores da Inflamação/metabolismo , Leishmaniose/patologia , Camundongos , Carga Parasitária , Fagocitose/imunologia , Fosforilação , Transdução de Sinais
11.
Cells ; 11(3)2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-35159341

RESUMO

Pneumonia is a leading cause of morbidity and mortality. While inflammation is a host protective response that ensures bacterial clearance, a finely regulated response is necessary to prevent bystander tissue damage. Glucocorticoid (GC)-induced leucine zipper (GILZ) is a GC-induced protein with anti-inflammatory and proresolving bioactions, yet the therapeutical role of GILZ in infectious diseases remains unexplored. Herein, we investigate the role and effects of GILZ during acute lung injury (ALI) induced by LPS and Streptococcus pneumoniae infection. GILZ deficient mice (GILZ-/-) presented more severe ALI, characterized by increased inflammation, decreased macrophage efferocytosis and pronounced lung damage. In contrast, pulmonary inflammation, and damage were attenuated in WT mice treated with TAT-GILZ fusion protein. During pneumococcal pneumonia, TAT-GILZ reduced neutrophilic inflammation and prevented the associated lung damage. There was also enhanced macrophage efferocytosis and bacterial clearance in TAT-GILZ-treated mice. Mechanistically, TAT-GILZ enhanced macrophage phagocytosis of pneumococcus, which was lower in GILZ-/- macrophages. Noteworthy, early treatment with TAT-GILZ rescued 30% of S. pneumoniae-infected mice from lethal pneumonia. Altogether, we present evidence that TAT-GILZ enhances host resilience and resistance to pneumococcal pneumonia by controlling pulmonary inflammation and bacterial loads leading to decreased lethality. Exploiting GILZ pathways holds promise for the treatment of severe respiratory infections.


Assuntos
Pneumonia Pneumocócica , Animais , Glucocorticoides/farmacologia , Inflamação/metabolismo , Zíper de Leucina , Camundongos , Pneumonia Pneumocócica/complicações , Pneumonia Pneumocócica/tratamento farmacológico , Streptococcus pneumoniae/metabolismo , Fatores de Transcrição/metabolismo
12.
JCI Insight ; 7(1)2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-34874920

RESUMO

Nonphlogistic migration of macrophages contributes to the clearance of pathogens and apoptotic cells, a critical step for the resolution of inflammation and return to homeostasis. Angiotensin-(1-7) [Ang-(1-7)] is a heptapeptide of the renin-angiotensin system that acts through Mas receptor (MasR). Ang-(1-7) has recently emerged as a novel proresolving mediator, yet Ang-(1-7) resolution mechanisms are not fully determined. Herein, Ang-(1-7) stimulated migration of human and murine monocytes/macrophages in a MasR-, CCR2-, and MEK/ERK1/2-dependent manner. Pleural injection of Ang-(1-7) promoted nonphlogistic mononuclear cell influx alongside increased levels of CCL2, IL-10, and macrophage polarization toward a regulatory phenotype. Ang-(1-7) induction of CCL2 and mononuclear cell migration was also dependent on MasR and MEK/ERK. Of note, MasR was upregulated during the resolution phase of inflammation, and its pharmacological inhibition or genetic deficiency impaired mononuclear cell recruitment during self-resolving models of LPS pleurisy and E. coli peritonitis. Inhibition/absence of MasR was associated with reduced CCL2 levels, impaired phagocytosis of bacteria, efferocytosis, and delayed resolution of inflammation. In summary, we have uncovered a potentially novel proresolving feature of Ang-(1-7), namely the recruitment of mononuclear cells favoring efferocytosis, phagocytosis, and resolution of inflammation. Mechanistically, cell migration was dependent on MasR, CCR2, and the MEK/ERK pathway.


Assuntos
Angiotensina I , Macrófagos , Monócitos , Fragmentos de Peptídeos , Fagocitose , Proto-Oncogene Mas/metabolismo , Angiotensina I/metabolismo , Angiotensina I/farmacologia , Animais , Células Cultivadas , Modelos Animais de Doenças , Humanos , Inflamação/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Macrófagos/efeitos dos fármacos , Macrófagos/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Monócitos/efeitos dos fármacos , Monócitos/fisiologia , Fragmentos de Peptídeos/metabolismo , Fragmentos de Peptídeos/farmacologia , Peritonite , Fagocitose/efeitos dos fármacos , Fagocitose/fisiologia , Fenótipo , Receptores CCR2/metabolismo
13.
Pharmacol Res ; 163: 105292, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33171305

RESUMO

Resolution failure of exacerbated inflammation triggered by Influenza A virus (IAV) prevents return of pulmonary homeostasis and survival, especially when associated with secondary pneumococcal infection. Therapeutic strategies based on pro-resolving molecules have great potential against acute inflammatory diseases. Angiotensin-(1-7) [Ang-(1-7)] is a pro-resolving mediator that acts on its Mas receptor (MasR) to promote resolution of inflammation. We investigated the effects of Ang-(1-7) and the role of MasR in the context of primary IAV infection and secondary pneumococcal infection and evaluated pulmonary inflammation, virus titers and bacteria counts, and pulmonary damage. Therapeutic treatment with Ang-(1-7) decreased neutrophil recruitment, lung injury, viral load and morbidity after a primary IAV infection. Ang-(1-7) induced apoptosis of neutrophils and efferocytosis of these cells by alveolar macrophages, but had no direct effect on IAV replication in vitro. MasR-deficient (MasR-/-) mice were highly susceptible to IAV infection, displaying uncontrolled inflammation, increased viral load and greater lethality rate, as compared to WT animals. Ang-(1-7) was not protective in MasR-/- mice. Interestingly, Ang-(1-7) given during a sublethal dose of IAV infection greatly reduced morbidity associated with a subsequent S. pneumoniae infection, as seen by decrease in the magnitude of neutrophil influx, number of bacteria in the blood leading to a lower lethality. Altogether, these results show that Ang-(1-7) is highly protective against severe primary IAV infection and protects against secondary bacterial infection of the lung. These effects are MasR-dependent. Mediators of resolution of inflammation, such as Ang-(1-7), should be considered for the treatment of pulmonary viral infections.


Assuntos
Angiotensina I/uso terapêutico , Anti-Inflamatórios/uso terapêutico , Fragmentos de Peptídeos/uso terapêutico , Infecções Pneumocócicas/tratamento farmacológico , Pneumonia Viral/tratamento farmacológico , Proteínas Proto-Oncogênicas/imunologia , Receptores Acoplados a Proteínas G/imunologia , Células A549 , Angiotensina I/farmacologia , Animais , Anti-Inflamatórios/farmacologia , Líquido da Lavagem Broncoalveolar/citologia , Líquido da Lavagem Broncoalveolar/imunologia , Citocinas/imunologia , Cães , Humanos , Vírus da Influenza A , Pulmão/efeitos dos fármacos , Pulmão/imunologia , Pulmão/patologia , Células Madin Darby de Rim Canino , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neutrófilos/efeitos dos fármacos , Neutrófilos/imunologia , Fragmentos de Peptídeos/farmacologia , Peroxidase/imunologia , Fagocitose/efeitos dos fármacos , Infecções Pneumocócicas/imunologia , Infecções Pneumocócicas/patologia , Pneumonia Viral/imunologia , Pneumonia Viral/patologia , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas/genética , Receptores Acoplados a Proteínas G/genética , Streptococcus pneumoniae
14.
Biomed Pharmacother ; 133: 111033, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33378946

RESUMO

For decades, glucocorticoids (GC) have been used to treat several inflammatory conditions, including chronic and autoimmune diseases, due to their potent anti-inflammatory properties. In the context of infectious diseases, the use of GCs may be effective as adjuvant to antibiotic therapy by controlling excessive inflammatory responses resulting in better outcome in some cases. However, the use of GCs has been associated with a vast number of side effects, including increased probability of immunosuppression and consequent risk of opportunistic infection. Glucocorticoid-induced leucine zipper (GILZ) and Annexin A1 (AnxA1) are GC-induced proteins intrinsically involved with the anti-inflammatory functions of GCs without the associated adverse metabolic effects. Recent studies have shown that these GC-proteins exhibit pro-resolving effects. An essential characteristic of pro-resolving molecules is their ability to coordinate the resolution of inflammation and promote host defense in most experimental models of infection. Although the role of GILZ and AnxA1 in the context of infectious diseases remain to be better explored, herein we provide an overview of the emerging functions of these GC-proteins obtained from pre-clinical models of infectious diseases.


Assuntos
Anexina A1/metabolismo , Anti-Inflamatórios/uso terapêutico , Infecções Bacterianas/tratamento farmacológico , Glucocorticoides/uso terapêutico , Inflamação/tratamento farmacológico , Doenças Parasitárias/tratamento farmacológico , Fatores de Transcrição/metabolismo , Viroses/tratamento farmacológico , Animais , Infecções Bacterianas/imunologia , Infecções Bacterianas/metabolismo , Infecções Bacterianas/microbiologia , Interações Hospedeiro-Patógeno , Humanos , Inflamação/imunologia , Inflamação/metabolismo , Doenças Parasitárias/imunologia , Doenças Parasitárias/metabolismo , Doenças Parasitárias/parasitologia , Indução de Remissão , Transdução de Sinais , Resultado do Tratamento , Viroses/imunologia , Viroses/metabolismo , Viroses/virologia
15.
J Thromb Haemost ; 18(10): 2468-2481, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32662180

RESUMO

Plg-RKT is a structurally unique transmembrane plasminogen receptor with both N- and C-terminal domains exposed on the extracellular face of the cell. Its C-terminal lysine functions to tether plasminogen to cell surfaces. Overexpression of Plg-RKT increases cell surface plasminogen binding capacity while genetic deletion of Plg-RKT decreases plasminogen binding. Plasminogen binding to Plg-RKT results in promotion of plasminogen activation to the broad spectrum serine protease plasmin. This function is promoted by the physical association of Plg-RKT with the urokinase receptor (uPAR). Plg-RKT is broadly expressed in cells and tissues throughout the organism and its sequence is remarkably conserved phylogenetically. Plg-RKT also is required for lactation and, thus, is necessary for survival of the species. This review provides an overview of established and emerging functions of Plg-RKT and highlights major roles for Plg-RKT in both the initiation and resolution of inflammation. While the roles for Plg-RKT in the inflammatory response are predominantly plasmin(ogen)-dependent, its role in lactation requires both plasminogen-dependent and plasminogen-independent mechanisms. Furthermore, the functions of Plg-RKT are dependent on sex. In view of the broad tissue distribution of Plg-RKT , its role in a broad array of physiological and pathological processes should provide a fruitful area for future investigation.


Assuntos
Fibrinolisina , Plasminogênio , Membrana Celular , Feminino , Humanos , Inflamação
16.
Pharmacol Res ; 159: 105030, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32562817

RESUMO

A complex intracellular signaling governs different cellular responses in inflammation. Extracellular stimuli are sensed, amplified, and transduced through a dynamic cellular network of messengers converting the first signal into a proper response: production of specific mediators, cell activation, survival, or death. Several overlapping pathways are coordinated to ensure specific and timely induction of inflammation to neutralize potential harms to the tissue. Ideally, the inflammatory response must be controlled and self-limited. Resolution of inflammation is an active process that culminates with termination of inflammation and restoration of tissue homeostasis. Comparably to the onset of inflammation, resolution responses are triggered by coordinated intracellular signaling pathways that transduce the message to the nucleus. However, the key messengers and pathways involved in signaling transduction for resolution are still poorly understood in comparison to the inflammatory network. cAMP has long been recognized as an inducer of anti-inflammatory responses and cAMP-dependent pathways have been extensively exploited pharmacologically to treat inflammatory diseases. Recently, cAMP has been pointed out as coordinator of key steps of resolution of inflammation. Here, we summarize the evidence for the role of cAMP at inducing important features of resolution of inflammation.


Assuntos
AMP Cíclico/metabolismo , Citocinas/metabolismo , Mediadores da Inflamação/metabolismo , Inflamação/metabolismo , Sistemas do Segundo Mensageiro , Animais , Apoptose , Quimiotaxia de Leucócito , Granulócitos/imunologia , Granulócitos/metabolismo , Granulócitos/patologia , Humanos , Inflamação/imunologia , Inflamação/patologia , Macrófagos/imunologia , Macrófagos/metabolismo , Fagocitose , Fenótipo
17.
Br J Pharmacol ; 177(17): 3898-3904, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32557557

RESUMO

Inflammation is generally accepted as a component of the host defence system and a protective response in the context of infectious diseases. However, altered inflammatory responses can contribute to disease in infected individuals. Many endogenous mediators that drive the resolution of inflammation are now known. Overall, mediators of resolution tend to decrease inflammatory responses and provide normal or greater ability of the host to deal with infection. In the lung, it seems that pro-resolution molecules, or strategies that promote their increase, tend to suppress inflammation and lung injury and facilitate control of bacterial or viral burden. Here, we argue that the demonstrated anti-inflammatory, pro-resolving, anti-thrombogenic and anti-microbial effects of such endogenous mediators of resolution may be useful in the treatment of the late stages of the disease in patients with COVID-19.


Assuntos
Anti-Inflamatórios/uso terapêutico , Tratamento Farmacológico da COVID-19 , Inflamação/tratamento farmacológico , Acetatos/uso terapêutico , Angiotensina I/uso terapêutico , Animais , Anexina A1/uso terapêutico , COVID-19/imunologia , Modelos Animais de Doenças , Ácidos Docosa-Hexaenoicos/uso terapêutico , Humanos , Peróxido de Hidrogênio/uso terapêutico , Inflamação/imunologia , Mediadores da Inflamação/imunologia , Camundongos , Infecções por Orthomyxoviridae/tratamento farmacológico , Infecções por Orthomyxoviridae/imunologia , Oxidantes/uso terapêutico , Fragmentos de Peptídeos/uso terapêutico , Peptídeos/uso terapêutico , Inibidores da Fosfodiesterase 4/uso terapêutico , Pneumonia Viral/tratamento farmacológico , Pneumonia Viral/imunologia , Rolipram/uso terapêutico , Vasodilatadores/uso terapêutico
18.
Pharmacol Res ; 158: 104842, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32413484

RESUMO

Macrophages are professional phagocytes that display remarkable plasticity, with a range of phenotypes that can be broadly characterized by the M1/M2 dichotomy. Glucocorticoid (GC)-induced leucine zipper (GILZ) is a protein known to mediate anti-inflammatory and some pro-resolving actions, including as neutrophil apoptosis. However, the role of GILZ in key macrophage function is not well understood. Here, we investigated the role of GILZ on macrophage reprogramming and efferocytosis. Using murine bone-marrow-derived macrophages (BMDMs), we found that GILZ was expressed in naive BMDMs and exhibited increased expression in M2-like macrophages (IL4-differentiated). M1-like macrophages (IFN/LPS-differentiated) from GILZ-/- mice showed higher expression of the M1 markers CD86, MHC class II, iNOS, IL-6 and TNF-α, associated with increased levels of phosphorylated STAT1 and lower IL-10 levels, compared to M1-differentiated cells from WT mice. There were no changes in the M2 markers CD206 and arginase-1 in macrophages from GILZ-/- mice differentiated with IL-4, compared to cells from WT animals. Treatment of M1-like macrophages with TAT-GILZ, a cell-permeable GILZ fusion protein, decreased the levels of CD86 and MHC class II in M1-like macrophages without modifying CD206 levels in M2-like macrophages. In line with the in vitro data, increased numbers of M1-like macrophages were found into the pleural cavity of GILZ-/- mice after LPS-injection, compared to WT mice. Moreover, efferocytosis was defective in the context of GILZ deficiency, both in vitro and in vivo. Conversely, treatment of LPS-injected mice with TAT-GILZ promoted inflammation resolution, associated with lower numbers of M1-like macrophages and increased efferocytosis. Collectively, these data indicate that GILZ is a regulator of important macrophage functions, contributing to macrophage reprogramming and efferocytosis, both key steps for the resolution of inflammation.


Assuntos
Apoptose/efeitos dos fármacos , Glucocorticoides/farmacologia , Fatores de Transcrição/efeitos dos fármacos , Animais , Células da Medula Óssea/efeitos dos fármacos , Ensaios de Migração de Leucócitos , Fenômenos Fisiológicos Celulares/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Inflamação/induzido quimicamente , Inflamação/patologia , Contagem de Leucócitos , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Cavidade Pleural/citologia
19.
Immunology ; 160(1): 78-89, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32107769

RESUMO

Annexins are well-known Ca2+ phospholipid-binding proteins, which have a wide variety of cellular functions. The role of annexin A1 (AnxA1) in the innate immune system has focused mainly on the anti-inflammatory and proresolving properties through its binding to the formyl-peptide receptor 2 (FPR2)/ALX receptor. However, studies suggesting an intracellular role of AnxA1 are emerging. In this study, we aimed to understand the role of AnxA1 for interleukin (IL)-1ß release in response to activators of the nucleotide-binding domain leucine-rich repeat (NLR) and pyrin domain containing receptor 3 (NLRP3) inflammasome. Using AnxA1 knockout mice, we observed that AnxA1 is required for IL-1ß release in vivo and in vitro. These effects were due to reduction of transcriptional levels of IL-1ß, NLRP3 and caspase-1, a step called NLRP3 priming. Moreover, we demonstrate that AnxA1 co-localize and directly bind to NLRP3, suggesting the role of AnxA1 in inflammasome activation is independent of its anti-inflammatory role via FPR2. Therefore, AnxA1 regulates NLRP3 inflammasome priming and activation in a FPR2-independent manner.


Assuntos
Anexina A1/metabolismo , Inflamassomos/imunologia , Interleucina-1beta/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Administração Intranasal , Animais , Cartilagem Articular , Caspase 1/metabolismo , Células Cultivadas , Modelos Animais de Doenças , Gota/induzido quimicamente , Gota/imunologia , Gota/patologia , Humanos , Inflamassomos/metabolismo , Injeções Intra-Articulares , Pulmão/imunologia , Pulmão/patologia , Macrófagos , Masculino , Camundongos , Camundongos Knockout , Cultura Primária de Células , Ligação Proteica/imunologia , Dióxido de Silício/administração & dosagem , Dióxido de Silício/toxicidade , Silicose/imunologia , Silicose/patologia , Transcrição Gênica/imunologia , Ácido Úrico/administração & dosagem , Ácido Úrico/toxicidade
20.
Cells ; 9(1)2020 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-31935860

RESUMO

Macrophages are central to inflammation resolution, an active process aimed at restoring tissue homeostasis following an inflammatory response. Here, the effects of db-cAMP on macrophage phenotype and function were investigated. Injection of db-cAMP into the pleural cavity of mice induced monocytes recruitment in a manner dependent on PKA and CCR2/CCL2 pathways. Furthermore, db-cAMP promoted reprogramming of bone-marrow-derived macrophages to a M2 phenotype as seen by increased Arg-1/CD206/Ym-1 expression and IL-10 levels (M2 markers). Db-cAMP also showed a synergistic effect with IL-4 in inducing STAT-3 phosphorylation and Arg-1 expression. Importantly, db-cAMP prevented IFN-γ/LPS-induced macrophage polarization to M1-like as shown by increased Arg-1 associated to lower levels of M1 cytokines (TNF-α/IL-6) and p-STAT1. In vivo, db-cAMP reduced the number of M1 macrophages induced by LPS injection without changes in M2 and Mres numbers. Moreover, db-cAMP enhanced efferocytosis of apoptotic neutrophils in a PKA-dependent manner and increased the expression of Annexin A1 and CD36, two molecules associated with efferocytosis. Finally, inhibition of endogenous PKA during LPS-induced pleurisy impaired the physiological resolution of inflammation. Taken together, the results suggest that cAMP is involved in the major functions of macrophages, such as nonphlogistic recruitment, reprogramming and efferocytosis, all key processes for inflammation resolution.


Assuntos
Reprogramação Celular , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Macrófagos/metabolismo , Fagocitose , Animais , Anexina A1/metabolismo , Apoptose/efeitos dos fármacos , Arginase/metabolismo , Bucladesina/farmacologia , Antígenos CD36/metabolismo , Polaridade Celular/efeitos dos fármacos , Reprogramação Celular/efeitos dos fármacos , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Inflamação/patologia , Interleucina-4/metabolismo , Isoquinolinas/farmacologia , Lipopolissacarídeos , Macrófagos/efeitos dos fármacos , Masculino , Camundongos Endogâmicos BALB C , Modelos Biológicos , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , Neutrófilos/patologia , Fagocitose/efeitos dos fármacos , Fenótipo , Fosforilação/efeitos dos fármacos , Cavidade Pleural/metabolismo , Receptores CCR2/metabolismo , Fator de Transcrição STAT3/metabolismo , Sulfonamidas/farmacologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...